slo-implementation by wshobson
Define and implement Service Level Indicators (SLIs) and Service Level Objectives (SLOs) with error budgets and alerting. Use when establishing reliability targets, implementing SRE practices, or measuring service performance.
DevOps
25.1K Stars
2.8K Forks
Updated Jan 9, 2026, 03:41 PM
Why Use This
This skill provides specialized capabilities for wshobson's codebase.
Use Cases
- Developing new features in the wshobson repository
- Refactoring existing code to follow wshobson standards
- Understanding and working with wshobson's codebase structure
Skill Snapshot
Auto scan of skill assets. Informational only.
Valid SKILL.md
Checks against SKILL.md specification
Source & Community
Skill Stats
SKILL.md 330 Lines
Total Files 1
Total Size 0 B
License NOASSERTION
---
name: slo-implementation
description: Define and implement Service Level Indicators (SLIs) and Service Level Objectives (SLOs) with error budgets and alerting. Use when establishing reliability targets, implementing SRE practices, or measuring service performance.
---
# SLO Implementation
Framework for defining and implementing Service Level Indicators (SLIs), Service Level Objectives (SLOs), and error budgets.
## Purpose
Implement measurable reliability targets using SLIs, SLOs, and error budgets to balance reliability with innovation velocity.
## When to Use
- Define service reliability targets
- Measure user-perceived reliability
- Implement error budgets
- Create SLO-based alerts
- Track reliability goals
## SLI/SLO/SLA Hierarchy
```
SLA (Service Level Agreement)
↓ Contract with customers
SLO (Service Level Objective)
↓ Internal reliability target
SLI (Service Level Indicator)
↓ Actual measurement
```
## Defining SLIs
### Common SLI Types
#### 1. Availability SLI
```promql
# Successful requests / Total requests
sum(rate(http_requests_total{status!~"5.."}[28d]))
/
sum(rate(http_requests_total[28d]))
```
#### 2. Latency SLI
```promql
# Requests below latency threshold / Total requests
sum(rate(http_request_duration_seconds_bucket{le="0.5"}[28d]))
/
sum(rate(http_request_duration_seconds_count[28d]))
```
#### 3. Durability SLI
```
# Successful writes / Total writes
sum(storage_writes_successful_total)
/
sum(storage_writes_total)
```
**Reference:** See `references/slo-definitions.md`
## Setting SLO Targets
### Availability SLO Examples
| SLO % | Downtime/Month | Downtime/Year |
|-------|----------------|---------------|
| 99% | 7.2 hours | 3.65 days |
| 99.9% | 43.2 minutes | 8.76 hours |
| 99.95%| 21.6 minutes | 4.38 hours |
| 99.99%| 4.32 minutes | 52.56 minutes |
### Choose Appropriate SLOs
**Consider:**
- User expectations
- Business requirements
- Current performance
- Cost of reliability
- Competitor benchmarks
**Example SLOs:**
```yaml
slos:
- name: api_availability
target: 99.9
window: 28d
sli: |
sum(rate(http_requests_total{status!~"5.."}[28d]))
/
sum(rate(http_requests_total[28d]))
- name: api_latency_p95
target: 99
window: 28d
sli: |
sum(rate(http_request_duration_seconds_bucket{le="0.5"}[28d]))
/
sum(rate(http_request_duration_seconds_count[28d]))
```
## Error Budget Calculation
### Error Budget Formula
```
Error Budget = 1 - SLO Target
```
**Example:**
- SLO: 99.9% availability
- Error Budget: 0.1% = 43.2 minutes/month
- Current Error: 0.05% = 21.6 minutes/month
- Remaining Budget: 50%
### Error Budget Policy
```yaml
error_budget_policy:
- remaining_budget: 100%
action: Normal development velocity
- remaining_budget: 50%
action: Consider postponing risky changes
- remaining_budget: 10%
action: Freeze non-critical changes
- remaining_budget: 0%
action: Feature freeze, focus on reliability
```
**Reference:** See `references/error-budget.md`
## SLO Implementation
### Prometheus Recording Rules
```yaml
# SLI Recording Rules
groups:
- name: sli_rules
interval: 30s
rules:
# Availability SLI
- record: sli:http_availability:ratio
expr: |
sum(rate(http_requests_total{status!~"5.."}[28d]))
/
sum(rate(http_requests_total[28d]))
# Latency SLI (requests < 500ms)
- record: sli:http_latency:ratio
expr: |
sum(rate(http_request_duration_seconds_bucket{le="0.5"}[28d]))
/
sum(rate(http_request_duration_seconds_count[28d]))
- name: slo_rules
interval: 5m
rules:
# SLO compliance (1 = meeting SLO, 0 = violating)
- record: slo:http_availability:compliance
expr: sli:http_availability:ratio >= bool 0.999
- record: slo:http_latency:compliance
expr: sli:http_latency:ratio >= bool 0.99
# Error budget remaining (percentage)
- record: slo:http_availability:error_budget_remaining
expr: |
(sli:http_availability:ratio - 0.999) / (1 - 0.999) * 100
# Error budget burn rate
- record: slo:http_availability:burn_rate_5m
expr: |
(1 - (
sum(rate(http_requests_total{status!~"5.."}[5m]))
/
sum(rate(http_requests_total[5m]))
)) / (1 - 0.999)
```
### SLO Alerting Rules
```yaml
groups:
- name: slo_alerts
interval: 1m
rules:
# Fast burn: 14.4x rate, 1 hour window
# Consumes 2% error budget in 1 hour
- alert: SLOErrorBudgetBurnFast
expr: |
slo:http_availability:burn_rate_1h > 14.4
and
slo:http_availability:burn_rate_5m > 14.4
for: 2m
labels:
severity: critical
annotations:
summary: "Fast error budget burn detected"
description: "Error budget burning at {{ $value }}x rate"
# Slow burn: 6x rate, 6 hour window
# Consumes 5% error budget in 6 hours
- alert: SLOErrorBudgetBurnSlow
expr: |
slo:http_availability:burn_rate_6h > 6
and
slo:http_availability:burn_rate_30m > 6
for: 15m
labels:
severity: warning
annotations:
summary: "Slow error budget burn detected"
description: "Error budget burning at {{ $value }}x rate"
# Error budget exhausted
- alert: SLOErrorBudgetExhausted
expr: slo:http_availability:error_budget_remaining < 0
for: 5m
labels:
severity: critical
annotations:
summary: "SLO error budget exhausted"
description: "Error budget remaining: {{ $value }}%"
```
## SLO Dashboard
**Grafana Dashboard Structure:**
```
┌────────────────────────────────────┐
│ SLO Compliance (Current) │
│ ✓ 99.95% (Target: 99.9%) │
├────────────────────────────────────┤
│ Error Budget Remaining: 65% │
│ ████████░░ 65% │
├────────────────────────────────────┤
│ SLI Trend (28 days) │
│ [Time series graph] │
├────────────────────────────────────┤
│ Burn Rate Analysis │
│ [Burn rate by time window] │
└────────────────────────────────────┘
```
**Example Queries:**
```promql
# Current SLO compliance
sli:http_availability:ratio * 100
# Error budget remaining
slo:http_availability:error_budget_remaining
# Days until error budget exhausted (at current burn rate)
(slo:http_availability:error_budget_remaining / 100)
*
28
/
(1 - sli:http_availability:ratio) * (1 - 0.999)
```
## Multi-Window Burn Rate Alerts
```yaml
# Combination of short and long windows reduces false positives
rules:
- alert: SLOBurnRateHigh
expr: |
(
slo:http_availability:burn_rate_1h > 14.4
and
slo:http_availability:burn_rate_5m > 14.4
)
or
(
slo:http_availability:burn_rate_6h > 6
and
slo:http_availability:burn_rate_30m > 6
)
labels:
severity: critical
```
## SLO Review Process
### Weekly Review
- Current SLO compliance
- Error budget status
- Trend analysis
- Incident impact
### Monthly Review
- SLO achievement
- Error budget usage
- Incident postmortems
- SLO adjustments
### Quarterly Review
- SLO relevance
- Target adjustments
- Process improvements
- Tooling enhancements
## Best Practices
1. **Start with user-facing services**
2. **Use multiple SLIs** (availability, latency, etc.)
3. **Set achievable SLOs** (don't aim for 100%)
4. **Implement multi-window alerts** to reduce noise
5. **Track error budget** consistently
6. **Review SLOs regularly**
7. **Document SLO decisions**
8. **Align with business goals**
9. **Automate SLO reporting**
10. **Use SLOs for prioritization**
## Reference Files
- `assets/slo-template.md` - SLO definition template
- `references/slo-definitions.md` - SLO definition patterns
- `references/error-budget.md` - Error budget calculations
## Related Skills
- `prometheus-configuration` - For metric collection
- `grafana-dashboards` - For SLO visualization
Name Size