Why Use This This skill provides specialized capabilities for wshobson's codebase.
Use Cases Developing new features in the wshobson repository Refactoring existing code to follow wshobson standards Understanding and working with wshobson's codebase structure
Skill Snapshot Auto scan of skill assets. Informational only.
Valid SKILL.md Checks against SKILL.md specification
Source & Community
Updated At Jan 9, 2026, 03:41 PM
Skill Stats
SKILL.md 178 Lines
Total Files 1
Total Size 0 B
License NOASSERTION
---
name: multi-cloud-architecture
description: Design multi-cloud architectures using a decision framework to select and integrate services across AWS, Azure, and GCP. Use when building multi-cloud systems, avoiding vendor lock-in, or leveraging best-of-breed services from multiple providers.
---
# Multi-Cloud Architecture
Decision framework and patterns for architecting applications across AWS, Azure, and GCP.
## Purpose
Design cloud-agnostic architectures and make informed decisions about service selection across cloud providers.
## When to Use
- Design multi-cloud strategies
- Migrate between cloud providers
- Select cloud services for specific workloads
- Implement cloud-agnostic architectures
- Optimize costs across providers
## Cloud Service Comparison
### Compute Services
| AWS | Azure | GCP | Use Case |
|-----|-------|-----|----------|
| EC2 | Virtual Machines | Compute Engine | IaaS VMs |
| ECS | Container Instances | Cloud Run | Containers |
| EKS | AKS | GKE | Kubernetes |
| Lambda | Functions | Cloud Functions | Serverless |
| Fargate | Container Apps | Cloud Run | Managed containers |
### Storage Services
| AWS | Azure | GCP | Use Case |
|-----|-------|-----|----------|
| S3 | Blob Storage | Cloud Storage | Object storage |
| EBS | Managed Disks | Persistent Disk | Block storage |
| EFS | Azure Files | Filestore | File storage |
| Glacier | Archive Storage | Archive Storage | Cold storage |
### Database Services
| AWS | Azure | GCP | Use Case |
|-----|-------|-----|----------|
| RDS | SQL Database | Cloud SQL | Managed SQL |
| DynamoDB | Cosmos DB | Firestore | NoSQL |
| Aurora | PostgreSQL/MySQL | Cloud Spanner | Distributed SQL |
| ElastiCache | Cache for Redis | Memorystore | Caching |
**Reference:** See `references/service-comparison.md` for complete comparison
## Multi-Cloud Patterns
### Pattern 1: Single Provider with DR
- Primary workload in one cloud
- Disaster recovery in another
- Database replication across clouds
- Automated failover
### Pattern 2: Best-of-Breed
- Use best service from each provider
- AI/ML on GCP
- Enterprise apps on Azure
- General compute on AWS
### Pattern 3: Geographic Distribution
- Serve users from nearest cloud region
- Data sovereignty compliance
- Global load balancing
- Regional failover
### Pattern 4: Cloud-Agnostic Abstraction
- Kubernetes for compute
- PostgreSQL for database
- S3-compatible storage (MinIO)
- Open source tools
## Cloud-Agnostic Architecture
### Use Cloud-Native Alternatives
- **Compute:** Kubernetes (EKS/AKS/GKE)
- **Database:** PostgreSQL/MySQL (RDS/SQL Database/Cloud SQL)
- **Message Queue:** Apache Kafka (MSK/Event Hubs/Confluent)
- **Cache:** Redis (ElastiCache/Azure Cache/Memorystore)
- **Object Storage:** S3-compatible API
- **Monitoring:** Prometheus/Grafana
- **Service Mesh:** Istio/Linkerd
### Abstraction Layers
```
Application Layer
↓
Infrastructure Abstraction (Terraform)
↓
Cloud Provider APIs
↓
AWS / Azure / GCP
```
## Cost Comparison
### Compute Pricing Factors
- **AWS:** On-demand, Reserved, Spot, Savings Plans
- **Azure:** Pay-as-you-go, Reserved, Spot
- **GCP:** On-demand, Committed use, Preemptible
### Cost Optimization Strategies
1. Use reserved/committed capacity (30-70% savings)
2. Leverage spot/preemptible instances
3. Right-size resources
4. Use serverless for variable workloads
5. Optimize data transfer costs
6. Implement lifecycle policies
7. Use cost allocation tags
8. Monitor with cloud cost tools
**Reference:** See `references/multi-cloud-patterns.md`
## Migration Strategy
### Phase 1: Assessment
- Inventory current infrastructure
- Identify dependencies
- Assess cloud compatibility
- Estimate costs
### Phase 2: Pilot
- Select pilot workload
- Implement in target cloud
- Test thoroughly
- Document learnings
### Phase 3: Migration
- Migrate workloads incrementally
- Maintain dual-run period
- Monitor performance
- Validate functionality
### Phase 4: Optimization
- Right-size resources
- Implement cloud-native services
- Optimize costs
- Enhance security
## Best Practices
1. **Use infrastructure as code** (Terraform/OpenTofu)
2. **Implement CI/CD pipelines** for deployments
3. **Design for failure** across clouds
4. **Use managed services** when possible
5. **Implement comprehensive monitoring**
6. **Automate cost optimization**
7. **Follow security best practices**
8. **Document cloud-specific configurations**
9. **Test disaster recovery** procedures
10. **Train teams** on multiple clouds
## Reference Files
- `references/service-comparison.md` - Complete service comparison
- `references/multi-cloud-patterns.md` - Architecture patterns
## Related Skills
- `terraform-module-library` - For IaC implementation
- `cost-optimization` - For cost management
- `hybrid-cloud-networking` - For connectivity