agentica-sdk by parcadei
Build Python agents with Agentica SDK - @agentic decorator, spawn(), persistence, MCP integration
Coding
2.8K Stars
192 Forks
Updated Jan 11, 2026, 08:18 PM
Why Use This
This skill provides specialized capabilities for parcadei's codebase.
Use Cases
- Developing new features in the parcadei repository
- Refactoring existing code to follow parcadei standards
- Understanding and working with parcadei's codebase structure
Skill Snapshot
Auto scan of skill assets. Informational only.
Valid SKILL.md
Checks against SKILL.md specification
Source & Community
Repository Continuous-Claude-v3
Skill Version
main
Community
2.8K 192
Updated At Jan 11, 2026, 08:18 PM
Skill Stats
SKILL.md 496 Lines
Total Files 1
Total Size 0 B
License NOASSERTION
---
name: agentica-sdk
description: Build Python agents with Agentica SDK - @agentic decorator, spawn(), persistence, MCP integration
allowed-tools: [Bash, Read, Write, Edit]
---
# Agentica SDK Reference (v0.3.1)
Build AI agents in Python using the Agentica framework. Agents can implement functions, maintain state, use tools, and coordinate with each other.
## When to Use
Use this skill when:
- Building new Python agents
- Adding agentic capabilities to existing code
- Integrating MCP tools with agents
- Implementing multi-agent orchestration
- Debugging agent behavior
## Quick Start
### Agentic Function (simplest)
```python
from agentica import agentic
@agentic()
async def add(a: int, b: int) -> int:
"""Returns the sum of a and b"""
...
result = await add(1, 2) # Agent computes: 3
```
### Spawned Agent (more control)
```python
from agentica import spawn
agent = await spawn(premise="You are a truth-teller.")
result: bool = await agent.call(bool, "The Earth is flat")
# Returns: False
```
## Core Patterns
### Return Types
```python
# String (default)
result = await agent.call("What is 2+2?")
# Typed output
result: int = await agent.call(int, "What is 2+2?")
result: dict[str, int] = await agent.call(dict[str, int], "Count items")
# Side-effects only
await agent.call(None, "Send message to John")
```
### Premise vs System Prompt
```python
# Premise: adds to default system prompt
agent = await spawn(premise="You are a math expert.")
# System: full control (replaces default)
agent = await spawn(system="You are a JSON-only responder.")
```
### Passing Tools (Scope)
```python
from agentica import agentic, spawn
# In decorator
@agentic(scope={'web_search': web_search_fn})
async def researcher(query: str) -> str:
"""Research a topic."""
...
# In spawn
agent = await spawn(
premise="Data analyzer",
scope={"analyze": custom_analyzer}
)
# Per-call scope
result = await agent.call(
dict[str, int],
"Analyze the dataset",
dataset=data, # Available as 'dataset'
analyzer=custom_fn # Available as 'analyzer'
)
```
### SDK Integration Pattern
```python
from slack_sdk import WebClient
slack = WebClient(token=SLACK_TOKEN)
# Extract specific methods
@agentic(scope={
'list_users': slack.users_list,
'send_message': slack.chat_postMessage
})
async def team_notifier(message: str) -> None:
"""Send team notifications."""
...
```
## Agent Instantiation
### spawn() - Async (most cases)
```python
agent = await spawn(premise="Helpful assistant")
```
### Agent() - Sync (for `__init__`)
```python
from agentica.agent import Agent
class CustomAgent:
def __init__(self):
# Synchronous - use Agent() not spawn()
self._brain = Agent(
premise="Specialized assistant",
scope={"tool": some_tool}
)
async def run(self, task: str) -> str:
return await self._brain(str, task)
```
## Model Selection
```python
# In spawn
agent = await spawn(
premise="Fast responses",
model="openai:gpt-5" # Default: openai:gpt-4.1
)
# In decorator
@agentic(model="anthropic:claude-sonnet-4.5")
async def analyze(text: str) -> dict:
"""Analyze text."""
...
```
**Available models:**
- `openai:gpt-3.5-turbo`, `openai:gpt-4o`, `openai:gpt-4.1`, `openai:gpt-5`
- `anthropic:claude-sonnet-4`, `anthropic:claude-opus-4.1`
- `anthropic:claude-sonnet-4.5`, `anthropic:claude-opus-4.5`
- Any OpenRouter slug (e.g., `google/gemini-2.5-flash`)
## Persistence (Stateful Agents)
```python
@agentic(persist=True)
async def chatbot(message: str) -> str:
"""Remembers conversation history."""
...
await chatbot("My name is Alice")
await chatbot("What's my name?") # Knows: Alice
```
For `spawn()` agents, state is automatic across calls to the same instance.
## Token Limits
```python
from agentica import spawn, MaxTokens
# Simple limit
agent = await spawn(
premise="Brief responses",
max_tokens=500
)
# Fine-grained control
agent = await spawn(
premise="Controlled output",
max_tokens=MaxTokens(
per_invocation=5000, # Total across all rounds
per_round=1000, # Per inference round
rounds=5 # Max inference rounds
)
)
```
## Token Usage Tracking
```python
from agentica import spawn, last_usage, total_usage
agent = await spawn(premise="You are helpful.")
await agent.call(str, "Hello!")
# Agent method
usage = agent.last_usage()
print(f"Last: {usage.input_tokens} in, {usage.output_tokens} out")
usage = agent.total_usage()
print(f"Total: {usage.total_tokens} processed")
# For @agentic functions
@agentic()
async def my_fn(x: str) -> str: ...
await my_fn("test")
print(last_usage(my_fn))
print(total_usage(my_fn))
```
## Streaming
```python
from agentica import spawn
from agentica.logging.loggers import StreamLogger
import asyncio
agent = await spawn(premise="You are helpful.")
stream = StreamLogger()
with stream:
result = asyncio.create_task(
agent.call(bool, "Is Paris the capital of France?")
)
# Consume stream FIRST for live output
async for chunk in stream:
print(chunk.content, end="", flush=True)
# chunk.role is 'user', 'agent', or 'system'
# Then await result
final = await result
```
## MCP Integration
```python
from agentica import spawn, agentic
# Via config file
agent = await spawn(
premise="Tool-using agent",
mcp="path/to/mcp_config.json"
)
@agentic(mcp="path/to/mcp_config.json")
async def tool_user(query: str) -> str:
"""Uses MCP tools."""
...
```
**mcp_config.json format:**
```json
{
"mcpServers": {
"tavily-remote-mcp": {
"command": "npx -y mcp-remote https://mcp.tavily.com/mcp/?tavilyApiKey=<key>",
"env": {}
}
}
}
```
## Logging
### Default Behavior
- Prints to stdout with colors
- Writes to `./logs/agent-<id>.log`
### Contextual Logging
```python
from agentica.logging.loggers import FileLogger, PrintLogger
from agentica.logging.agent_logger import NoLogging
# File only
with FileLogger():
agent = await spawn(premise="Debug agent")
await agent.call(int, "Calculate")
# Silent
with NoLogging():
agent = await spawn(premise="Silent agent")
```
### Per-Agent Logging
```python
# Listeners are in agent_listener submodule (NOT exported from agentica.logging)
from agentica.logging.agent_listener import (
PrintOnlyListener, # Console output only
FileOnlyListener, # File logging only
StandardListener, # Both console + file (default)
NoopListener, # Silent - no logging
)
agent = await spawn(
premise="Custom logging",
listener=PrintOnlyListener
)
# Silent agent
agent = await spawn(
premise="Silent agent",
listener=NoopListener
)
```
### Global Config
```python
from agentica.logging.agent_listener import (
set_default_agent_listener,
get_default_agent_listener,
PrintOnlyListener,
)
set_default_agent_listener(PrintOnlyListener)
set_default_agent_listener(None) # Disable all
```
## Error Handling
```python
from agentica.errors import (
AgenticaError, # Base for all SDK errors
RateLimitError, # Rate limiting
InferenceError, # HTTP errors from inference
MaxTokensError, # Token limit exceeded
MaxRoundsError, # Max inference rounds exceeded
ContentFilteringError, # Content filtered
APIConnectionError, # Network issues
APITimeoutError, # Request timeout
InsufficientCreditsError,# Out of credits
OverloadedError, # Server overloaded
ServerError, # Generic server error
)
try:
result = await agent.call(str, "Do something")
except RateLimitError:
await asyncio.sleep(60)
result = await agent.call(str, "Do something")
except MaxTokensError:
# Reduce scope or increase limits
pass
except ContentFilteringError:
# Content was filtered
pass
except InferenceError as e:
logger.error(f"Inference failed: {e}")
except AgenticaError as e:
logger.error(f"SDK error: {e}")
```
### Custom Exceptions
```python
class DataValidationError(Exception):
"""Invalid input data."""
pass
@agentic(DataValidationError) # Pass exception type
async def analyze(data: str) -> dict:
"""
Analyze data.
Raises:
DataValidationError: If data is malformed
"""
...
try:
result = await analyze(raw_data)
except DataValidationError as e:
logger.warning(f"Invalid: {e}")
```
## Multi-Agent Patterns
### Custom Agent Class
```python
from agentica.agent import Agent
class ResearchAgent:
def __init__(self, web_search_fn):
self._brain = Agent(
premise="Research assistant.",
scope={"web_search": web_search_fn}
)
async def research(self, topic: str) -> str:
return await self._brain(str, f"Research: {topic}")
async def summarize(self, text: str) -> str:
return await self._brain(str, f"Summarize: {text}")
```
### Agent Orchestration
```python
class LeadResearcher:
def __init__(self):
self._brain = Agent(
premise="Coordinate research across subagents.",
scope={"SubAgent": ResearchAgent}
)
async def __call__(self, query: str) -> str:
return await self._brain(str, query)
lead = LeadResearcher()
report = await lead("Research AI agent frameworks 2025")
```
## Tracing & Debugging
### OpenTelemetry Tracing
```python
from agentica import initialize_tracing
# Initialize tracing (returns TracerProvider)
tracer = initialize_tracing(
service_name="my-agent-app",
environment="development", # Optional
tempo_endpoint="http://localhost:4317", # Optional: Grafana Tempo
organization_id="my-org", # Optional
log_level="INFO", # DEBUG, INFO, WARNING, ERROR
instrument_httpx=False, # Optional: trace HTTP calls
)
```
### SDK Debug Logging
```python
from agentica import enable_sdk_logging
# Enable internal SDK logs (for debugging the SDK itself)
disable_fn = enable_sdk_logging(log_tags="1")
# ... run agents ...
disable_fn() # Disable when done
```
## Top-Level Exports
```python
# Main imports from agentica
from agentica import (
# Core
Agent, # Synchronous agent class
agentic, # @agentic decorator
spawn, # Async agent creation
# Configuration
ModelStrings, # Model string type hints
AgenticFunction, # Agentic function type
# Token tracking
last_usage, # Get last call's token usage
total_usage, # Get cumulative token usage
# Tracing/Logging
initialize_tracing, # OpenTelemetry setup
enable_sdk_logging, # SDK debug logs
# Version
__version__, # "0.3.1"
)
```
## Checklist
Before using Agentica:
- [ ] Functions with `@agentic()` MUST be `async`
- [ ] `spawn()` returns awaitable - use `await spawn(...)`
- [ ] `agent.call()` is awaitable - use `await agent.call(...)`
- [ ] First arg to `call()` is return type, second is prompt string
- [ ] Use `persist=True` for conversation memory in `@agentic`
- [ ] Use `Agent()` (not `spawn()`) in synchronous `__init__`
- [ ] Document exceptions in docstrings for agent to raise them
- [ ] Import listeners from `agentica.logging.agent_listener` (NOT `agentica.logging`)
Name Size