Why Use This This skill provides specialized capabilities for davila7's codebase.
Use Cases Developing new features in the davila7 repository Refactoring existing code to follow davila7 standards Understanding and working with davila7's codebase structure
Skill Snapshot Auto scan of skill assets. Informational only.
Valid SKILL.md Checks against SKILL.md specification
Source & Community
Updated At Jan 12, 2026, 05:31 AM
Skill Stats
SKILL.md 236 Lines
Total Files 1
Total Size 0 B
License MIT
---
name: sentencepiece
description: Language-independent tokenizer treating text as raw Unicode. Supports BPE and Unigram algorithms. Fast (50k sentences/sec), lightweight (6MB memory), deterministic vocabulary. Used by T5, ALBERT, XLNet, mBART. Train on raw text without pre-tokenization. Use when you need multilingual support, CJK languages, or reproducible tokenization.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Tokenization, SentencePiece, Language-Independent, BPE, Unigram, Multilingual, CJK Languages, Unicode, Deterministic, Google]
dependencies: [sentencepiece, transformers]
---
# SentencePiece - Language-Independent Tokenization
Unsupervised tokenizer that works on raw text without language-specific preprocessing.
## When to use SentencePiece
**Use SentencePiece when:**
- Building multilingual models (no language-specific rules)
- Working with CJK languages (Chinese, Japanese, Korean)
- Need reproducible tokenization (deterministic vocabulary)
- Want to train on raw text (no pre-tokenization needed)
- Require lightweight deployment (6MB memory, 50k sentences/sec)
**Performance**:
- **Speed**: 50,000 sentences/sec
- **Memory**: ~6MB for loaded model
- **Languages**: All (language-independent)
**Use alternatives instead**:
- **HuggingFace Tokenizers**: Faster training, more flexibility
- **tiktoken**: OpenAI models (GPT-3.5/4)
- **BERT WordPiece**: English-centric tasks
## Quick start
### Installation
```bash
# Python
pip install sentencepiece
# C++ (requires CMake)
git clone https://github.com/google/sentencepiece.git
cd sentencepiece
mkdir build && cd build
cmake .. && make -j $(nproc)
sudo make install
```
### Train model
```bash
# Command-line (BPE with 8000 vocab)
spm_train --input=data.txt --model_prefix=m --vocab_size=8000 --model_type=bpe
# Python API
import sentencepiece as spm
spm.SentencePieceTrainer.train(
input='data.txt',
model_prefix='m',
vocab_size=8000,
model_type='bpe'
)
```
**Training time**: ~1-2 minutes for 100MB corpus
### Encode and decode
```python
import sentencepiece as spm
# Load model
sp = spm.SentencePieceProcessor(model_file='m.model')
# Encode to pieces
pieces = sp.encode('This is a test', out_type=str)
print(pieces) # ['▁This', '▁is', '▁a', '▁test']
# Encode to IDs
ids = sp.encode('This is a test', out_type=int)
print(ids) # [284, 47, 11, 1243]
# Decode
text = sp.decode(ids)
print(text) # "This is a test"
```
## Language-independent design
### Whitespace as symbol (▁)
```python
text = "Hello world"
pieces = sp.encode(text, out_type=str)
print(pieces) # ['▁Hello', '▁world']
# Decode preserves spaces
decoded = sp.decode_pieces(pieces)
print(decoded) # "Hello world"
```
**Key principle**: Treat text as raw Unicode, whitespace = ▁ (meta symbol)
## Tokenization algorithms
### BPE (Byte-Pair Encoding)
```python
spm.SentencePieceTrainer.train(
input='data.txt',
model_prefix='bpe_model',
vocab_size=16000,
model_type='bpe'
)
```
**Used by**: mBART
### Unigram (default)
```python
spm.SentencePieceTrainer.train(
input='data.txt',
model_prefix='unigram_model',
vocab_size=8000,
model_type='unigram'
)
```
**Used by**: T5, ALBERT, XLNet
## Training configuration
### Essential parameters
```python
spm.SentencePieceTrainer.train(
input='corpus.txt',
model_prefix='m',
vocab_size=32000,
model_type='unigram',
character_coverage=0.9995, # 1.0 for CJK
user_defined_symbols=['[SEP]', '[CLS]'],
unk_piece='<unk>',
num_threads=16
)
```
### Character coverage
| Language Type | Coverage | Rationale |
|---------------|----------|-----------|
| English | 0.9995 | Most common chars |
| CJK (Chinese) | 1.0 | All characters needed |
| Multilingual | 0.9995 | Balance |
## Encoding options
### Subword regularization
```python
# Sample different tokenizations
for _ in range(3):
pieces = sp.encode('tokenization', out_type=str, enable_sampling=True, alpha=0.1)
print(pieces)
# Output (different each time):
# ['▁token', 'ization']
# ['▁tok', 'en', 'ization']
```
**Use case**: Data augmentation for robustness.
## Common patterns
### T5-style training
```python
spm.SentencePieceTrainer.train(
input='c4_corpus.txt',
model_prefix='t5',
vocab_size=32000,
model_type='unigram',
user_defined_symbols=[f'<extra_id_{i}>' for i in range(100)],
unk_id=2,
eos_id=1,
pad_id=0
)
```
### Integration with transformers
```python
from transformers import T5Tokenizer
# T5 uses SentencePiece internally
tokenizer = T5Tokenizer.from_pretrained('t5-base')
inputs = tokenizer('translate English to French: Hello', return_tensors='pt')
```
## Performance benchmarks
### Training speed
| Corpus | BPE (16k) | Unigram (8k) |
|--------|-----------|--------------|
| 100 MB | 1-2 min | 3-4 min |
| 1 GB | 10-15 min | 30-40 min |
### Tokenization speed
- **SentencePiece**: 50,000 sentences/sec
- **HF Tokenizers**: 200,000 sentences/sec (4× faster)
## Supported models
**T5 family**: `t5-base`, `t5-large` (32k vocab, Unigram)
**ALBERT**: `albert-base-v2` (30k vocab, Unigram)
**XLNet**: `xlnet-base-cased` (32k vocab, Unigram)
**mBART**: `facebook/mbart-large-50` (250k vocab, BPE)
## References
- **[Training Guide](references/training.md)** - Detailed options, corpus preparation
- **[Algorithms](references/algorithms.md)** - BPE vs Unigram, subword regularization
## Resources
- **GitHub**: https://github.com/google/sentencepiece ⭐ 10,000+
- **Paper**: https://arxiv.org/abs/1808.06226 (EMNLP 2018)
- **Version**: 0.2.0+