ray-train by davila7
Distributed training orchestration across clusters. Scales PyTorch/TensorFlow/HuggingFace from laptop to 1000s of nodes. Built-in hyperparameter tuning with Ray Tune, fault tolerance, elastic scaling. Use when training massive models across multiple machines or running distributed hyperparameter sweeps.
Coding
15.7K Stars
1.4K Forks
Updated Jan 12, 2026, 05:31 AM
Why Use This
This skill provides specialized capabilities for davila7's codebase.
Use Cases
- Developing new features in the davila7 repository
- Refactoring existing code to follow davila7 standards
- Understanding and working with davila7's codebase structure
Skill Snapshot
Auto scan of skill assets. Informational only.
Valid SKILL.md
Checks against SKILL.md specification
Source & Community
Repository claude-code-templates
Skill Version
main
Community
15.7K 1.4K
Updated At Jan 12, 2026, 05:31 AM
Skill Stats
SKILL.md 407 Lines
Total Files 1
Total Size 0 B
License MIT
---
name: ray-train
description: Distributed training orchestration across clusters. Scales PyTorch/TensorFlow/HuggingFace from laptop to 1000s of nodes. Built-in hyperparameter tuning with Ray Tune, fault tolerance, elastic scaling. Use when training massive models across multiple machines or running distributed hyperparameter sweeps.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Ray Train, Distributed Training, Orchestration, Ray, Hyperparameter Tuning, Fault Tolerance, Elastic Scaling, Multi-Node, PyTorch, TensorFlow]
dependencies: [ray[train], torch, transformers]
---
# Ray Train - Distributed Training Orchestration
## Quick start
Ray Train scales machine learning training from single GPU to multi-node clusters with minimal code changes.
**Installation**:
```bash
pip install -U "ray[train]"
```
**Basic PyTorch training** (single node):
```python
import ray
from ray import train
from ray.train import ScalingConfig
from ray.train.torch import TorchTrainer
import torch
import torch.nn as nn
# Define training function
def train_func(config):
# Your normal PyTorch code
model = nn.Linear(10, 1)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Prepare for distributed (Ray handles device placement)
model = train.torch.prepare_model(model)
for epoch in range(10):
# Your training loop
output = model(torch.randn(32, 10))
loss = output.sum()
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Report metrics (logged automatically)
train.report({"loss": loss.item(), "epoch": epoch})
# Run distributed training
trainer = TorchTrainer(
train_func,
scaling_config=ScalingConfig(
num_workers=4, # 4 GPUs/workers
use_gpu=True
)
)
result = trainer.fit()
print(f"Final loss: {result.metrics['loss']}")
```
**That's it!** Ray handles:
- Distributed coordination
- GPU allocation
- Fault tolerance
- Checkpointing
- Metric aggregation
## Common workflows
### Workflow 1: Scale existing PyTorch code
**Original single-GPU code**:
```python
model = MyModel().cuda()
optimizer = torch.optim.Adam(model.parameters())
for epoch in range(epochs):
for batch in dataloader:
loss = model(batch)
loss.backward()
optimizer.step()
```
**Ray Train version** (scales to multi-GPU/multi-node):
```python
from ray.train.torch import TorchTrainer
from ray import train
def train_func(config):
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
# Prepare for distributed (automatic device placement)
model = train.torch.prepare_model(model)
dataloader = train.torch.prepare_data_loader(dataloader)
for epoch in range(epochs):
for batch in dataloader:
loss = model(batch)
loss.backward()
optimizer.step()
# Report metrics
train.report({"loss": loss.item()})
# Scale to 8 GPUs
trainer = TorchTrainer(
train_func,
scaling_config=ScalingConfig(num_workers=8, use_gpu=True)
)
trainer.fit()
```
**Benefits**: Same code runs on 1 GPU or 1000 GPUs
### Workflow 2: HuggingFace Transformers integration
```python
from ray.train.huggingface import TransformersTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
def train_func(config):
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Training arguments (HuggingFace API)
training_args = TrainingArguments(
output_dir="./output",
num_train_epochs=3,
per_device_train_batch_size=8,
learning_rate=2e-5,
)
# Ray automatically handles distributed training
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
)
trainer.train()
# Scale to multi-node (2 nodes × 8 GPUs = 16 workers)
trainer = TransformersTrainer(
train_func,
scaling_config=ScalingConfig(
num_workers=16,
use_gpu=True,
resources_per_worker={"GPU": 1}
)
)
result = trainer.fit()
```
### Workflow 3: Hyperparameter tuning with Ray Tune
```python
from ray import tune
from ray.train.torch import TorchTrainer
from ray.tune.schedulers import ASHAScheduler
def train_func(config):
# Use hyperparameters from config
lr = config["lr"]
batch_size = config["batch_size"]
model = MyModel()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
model = train.torch.prepare_model(model)
for epoch in range(10):
# Training loop
loss = train_epoch(model, optimizer, batch_size)
train.report({"loss": loss, "epoch": epoch})
# Define search space
param_space = {
"lr": tune.loguniform(1e-5, 1e-2),
"batch_size": tune.choice([16, 32, 64, 128])
}
# Run 20 trials with early stopping
tuner = tune.Tuner(
TorchTrainer(
train_func,
scaling_config=ScalingConfig(num_workers=4, use_gpu=True)
),
param_space=param_space,
tune_config=tune.TuneConfig(
num_samples=20,
scheduler=ASHAScheduler(metric="loss", mode="min")
)
)
results = tuner.fit()
best = results.get_best_result(metric="loss", mode="min")
print(f"Best hyperparameters: {best.config}")
```
**Result**: Distributed hyperparameter search across cluster
### Workflow 4: Checkpointing and fault tolerance
```python
from ray import train
from ray.train import Checkpoint
def train_func(config):
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
# Try to resume from checkpoint
checkpoint = train.get_checkpoint()
if checkpoint:
with checkpoint.as_directory() as checkpoint_dir:
state = torch.load(f"{checkpoint_dir}/model.pt")
model.load_state_dict(state["model"])
optimizer.load_state_dict(state["optimizer"])
start_epoch = state["epoch"]
else:
start_epoch = 0
model = train.torch.prepare_model(model)
for epoch in range(start_epoch, 100):
loss = train_epoch(model, optimizer)
# Save checkpoint every 10 epochs
if epoch % 10 == 0:
checkpoint = Checkpoint.from_directory(
train.get_context().get_trial_dir()
)
torch.save({
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch
}, checkpoint.path / "model.pt")
train.report({"loss": loss}, checkpoint=checkpoint)
trainer = TorchTrainer(
train_func,
scaling_config=ScalingConfig(num_workers=8, use_gpu=True)
)
# Automatically resumes from checkpoint if training fails
result = trainer.fit()
```
### Workflow 5: Multi-node training
```python
from ray.train import ScalingConfig
# Connect to Ray cluster
ray.init(address="auto") # Or ray.init("ray://head-node:10001")
# Train across 4 nodes × 8 GPUs = 32 workers
trainer = TorchTrainer(
train_func,
scaling_config=ScalingConfig(
num_workers=32,
use_gpu=True,
resources_per_worker={"GPU": 1, "CPU": 4},
placement_strategy="SPREAD" # Spread across nodes
)
)
result = trainer.fit()
```
**Launch Ray cluster**:
```bash
# On head node
ray start --head --port=6379
# On worker nodes
ray start --address=<head-node-ip>:6379
```
## When to use vs alternatives
**Use Ray Train when**:
- Training across multiple machines (multi-node)
- Need hyperparameter tuning at scale
- Want fault tolerance (auto-restart failed workers)
- Elastic scaling (add/remove nodes during training)
- Unified framework (same code for PyTorch/TF/HF)
**Key advantages**:
- **Multi-node orchestration**: Easiest multi-node setup
- **Ray Tune integration**: Best-in-class hyperparameter tuning
- **Fault tolerance**: Automatic recovery from failures
- **Elastic**: Add/remove nodes without restarting
- **Framework agnostic**: PyTorch, TensorFlow, HuggingFace, XGBoost
**Use alternatives instead**:
- **Accelerate**: Single-node multi-GPU, simpler
- **PyTorch Lightning**: High-level abstractions, callbacks
- **DeepSpeed**: Maximum performance, complex setup
- **Raw DDP**: Maximum control, minimal overhead
## Common issues
**Issue: Ray cluster not connecting**
Check ray status:
```bash
ray status
# Should show:
# - Nodes: 4
# - GPUs: 32
# - Workers: Ready
```
If not connected:
```bash
# Restart head node
ray stop
ray start --head --port=6379 --dashboard-host=0.0.0.0
# Restart worker nodes
ray stop
ray start --address=<head-ip>:6379
```
**Issue: Out of memory**
Reduce workers or use gradient accumulation:
```python
scaling_config=ScalingConfig(
num_workers=4, # Reduce from 8
use_gpu=True
)
# In train_func, accumulate gradients
for i, batch in enumerate(dataloader):
loss = model(batch) / accumulation_steps
loss.backward()
if (i + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
```
**Issue: Slow training**
Check if data loading is bottleneck:
```python
import time
def train_func(config):
for epoch in range(epochs):
start = time.time()
for batch in dataloader:
data_time = time.time() - start
# Train...
start = time.time()
print(f"Data loading: {data_time:.3f}s")
```
If data loading is slow, increase workers:
```python
dataloader = DataLoader(dataset, num_workers=8)
```
## Advanced topics
**Multi-node setup**: See [references/multi-node.md](references/multi-node.md) for Ray cluster deployment on AWS, GCP, Kubernetes, and SLURM.
**Hyperparameter tuning**: See [references/hyperparameter-tuning.md](references/hyperparameter-tuning.md) for Ray Tune integration, search algorithms (Optuna, HyperOpt), and population-based training.
**Custom training loops**: See [references/custom-loops.md](references/custom-loops.md) for advanced Ray Train usage, custom backends, and integration with other frameworks.
## Hardware requirements
- **Single node**: 1+ GPUs (or CPUs)
- **Multi-node**: 2+ machines with network connectivity
- **Cloud**: AWS, GCP, Azure (Ray autoscaling)
- **On-prem**: Kubernetes, SLURM clusters
**Supported accelerators**:
- NVIDIA GPUs (CUDA)
- AMD GPUs (ROCm)
- TPUs (Google Cloud)
- CPUs
## Resources
- Docs: https://docs.ray.io/en/latest/train/train.html
- GitHub: https://github.com/ray-project/ray ⭐ 36,000+
- Version: 2.40.0+
- Examples: https://docs.ray.io/en/latest/train/examples.html
- Slack: https://forms.gle/9TSdDYUgxYs8SA9e8
- Used by: OpenAI, Uber, Spotify, Shopify, Instacart
Name Size