model-pruning by davila7

Reduce LLM size and accelerate inference using pruning techniques like Wanda and SparseGPT. Use when compressing models without retraining, achieving 50% sparsity with minimal accuracy loss, or enabling faster inference on hardware accelerators. Covers unstructured pruning, structured pruning, N:M sparsity, magnitude pruning, and one-shot methods.

Coding
15.7K Stars
1.4K Forks
Updated Jan 12, 2026, 05:31 AM

Why Use This

This skill provides specialized capabilities for davila7's codebase.

Use Cases

  • Developing new features in the davila7 repository
  • Refactoring existing code to follow davila7 standards
  • Understanding and working with davila7's codebase structure

Skill Snapshot

Auto scan of skill assets. Informational only.

Valid SKILL.md

Checks against SKILL.md specification

Source & Community

Skill Version
main
Community
15.7K 1.4K
Updated At Jan 12, 2026, 05:31 AM

Skill Stats

SKILL.md 496 Lines
Total Files 1
Total Size 0 B
License MIT