huggingface-tokenizers by davila7
Fast tokenizers optimized for research and production. Rust-based implementation tokenizes 1GB in <20 seconds. Supports BPE, WordPiece, and Unigram algorithms. Train custom vocabularies, track alignments, handle padding/truncation. Integrates seamlessly with transformers. Use when you need high-performance tokenization or custom tokenizer training.
Coding
15.7K Stars
1.4K Forks
Updated Jan 12, 2026, 05:31 AM
Why Use This
This skill provides specialized capabilities for davila7's codebase.
Use Cases
- Developing new features in the davila7 repository
- Refactoring existing code to follow davila7 standards
- Understanding and working with davila7's codebase structure
Skill Snapshot
Auto scan of skill assets. Informational only.
Valid SKILL.md
Checks against SKILL.md specification
Source & Community
Repository claude-code-templates
Skill Version
main
Community
15.7K 1.4K
Updated At Jan 12, 2026, 05:31 AM
Skill Stats
SKILL.md 517 Lines
Total Files 1
Total Size 0 B
License MIT
---
name: huggingface-tokenizers
description: Fast tokenizers optimized for research and production. Rust-based implementation tokenizes 1GB in <20 seconds. Supports BPE, WordPiece, and Unigram algorithms. Train custom vocabularies, track alignments, handle padding/truncation. Integrates seamlessly with transformers. Use when you need high-performance tokenization or custom tokenizer training.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Tokenization, HuggingFace, BPE, WordPiece, Unigram, Fast Tokenization, Rust, Custom Tokenizer, Alignment Tracking, Production]
dependencies: [tokenizers, transformers, datasets]
---
# HuggingFace Tokenizers - Fast Tokenization for NLP
Fast, production-ready tokenizers with Rust performance and Python ease-of-use.
## When to use HuggingFace Tokenizers
**Use HuggingFace Tokenizers when:**
- Need extremely fast tokenization (<20s per GB of text)
- Training custom tokenizers from scratch
- Want alignment tracking (token → original text position)
- Building production NLP pipelines
- Need to tokenize large corpora efficiently
**Performance**:
- **Speed**: <20 seconds to tokenize 1GB on CPU
- **Implementation**: Rust core with Python/Node.js bindings
- **Efficiency**: 10-100× faster than pure Python implementations
**Use alternatives instead**:
- **SentencePiece**: Language-independent, used by T5/ALBERT
- **tiktoken**: OpenAI's BPE tokenizer for GPT models
- **transformers AutoTokenizer**: Loading pretrained only (uses this library internally)
## Quick start
### Installation
```bash
# Install tokenizers
pip install tokenizers
# With transformers integration
pip install tokenizers transformers
```
### Load pretrained tokenizer
```python
from tokenizers import Tokenizer
# Load from HuggingFace Hub
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
# Encode text
output = tokenizer.encode("Hello, how are you?")
print(output.tokens) # ['hello', ',', 'how', 'are', 'you', '?']
print(output.ids) # [7592, 1010, 2129, 2024, 2017, 1029]
# Decode back
text = tokenizer.decode(output.ids)
print(text) # "hello, how are you?"
```
### Train custom BPE tokenizer
```python
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import Whitespace
# Initialize tokenizer with BPE model
tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
# Configure trainer
trainer = BpeTrainer(
vocab_size=30000,
special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"],
min_frequency=2
)
# Train on files
files = ["train.txt", "validation.txt"]
tokenizer.train(files, trainer)
# Save
tokenizer.save("my-tokenizer.json")
```
**Training time**: ~1-2 minutes for 100MB corpus, ~10-20 minutes for 1GB
### Batch encoding with padding
```python
# Enable padding
tokenizer.enable_padding(pad_id=3, pad_token="[PAD]")
# Encode batch
texts = ["Hello world", "This is a longer sentence"]
encodings = tokenizer.encode_batch(texts)
for encoding in encodings:
print(encoding.ids)
# [101, 7592, 2088, 102, 3, 3, 3]
# [101, 2023, 2003, 1037, 2936, 6251, 102]
```
## Tokenization algorithms
### BPE (Byte-Pair Encoding)
**How it works**:
1. Start with character-level vocabulary
2. Find most frequent character pair
3. Merge into new token, add to vocabulary
4. Repeat until vocabulary size reached
**Used by**: GPT-2, GPT-3, RoBERTa, BART, DeBERTa
```python
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import ByteLevel
tokenizer = Tokenizer(BPE(unk_token="<|endoftext|>"))
tokenizer.pre_tokenizer = ByteLevel()
trainer = BpeTrainer(
vocab_size=50257,
special_tokens=["<|endoftext|>"],
min_frequency=2
)
tokenizer.train(files=["data.txt"], trainer=trainer)
```
**Advantages**:
- Handles OOV words well (breaks into subwords)
- Flexible vocabulary size
- Good for morphologically rich languages
**Trade-offs**:
- Tokenization depends on merge order
- May split common words unexpectedly
### WordPiece
**How it works**:
1. Start with character vocabulary
2. Score merge pairs: `frequency(pair) / (frequency(first) × frequency(second))`
3. Merge highest scoring pair
4. Repeat until vocabulary size reached
**Used by**: BERT, DistilBERT, MobileBERT
```python
from tokenizers import Tokenizer
from tokenizers.models import WordPiece
from tokenizers.trainers import WordPieceTrainer
from tokenizers.pre_tokenizers import Whitespace
from tokenizers.normalizers import BertNormalizer
tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
tokenizer.normalizer = BertNormalizer(lowercase=True)
tokenizer.pre_tokenizer = Whitespace()
trainer = WordPieceTrainer(
vocab_size=30522,
special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"],
continuing_subword_prefix="##"
)
tokenizer.train(files=["corpus.txt"], trainer=trainer)
```
**Advantages**:
- Prioritizes meaningful merges (high score = semantically related)
- Used successfully in BERT (state-of-the-art results)
**Trade-offs**:
- Unknown words become `[UNK]` if no subword match
- Saves vocabulary, not merge rules (larger files)
### Unigram
**How it works**:
1. Start with large vocabulary (all substrings)
2. Compute loss for corpus with current vocabulary
3. Remove tokens with minimal impact on loss
4. Repeat until vocabulary size reached
**Used by**: ALBERT, T5, mBART, XLNet (via SentencePiece)
```python
from tokenizers import Tokenizer
from tokenizers.models import Unigram
from tokenizers.trainers import UnigramTrainer
tokenizer = Tokenizer(Unigram())
trainer = UnigramTrainer(
vocab_size=8000,
special_tokens=["<unk>", "<s>", "</s>"],
unk_token="<unk>"
)
tokenizer.train(files=["data.txt"], trainer=trainer)
```
**Advantages**:
- Probabilistic (finds most likely tokenization)
- Works well for languages without word boundaries
- Handles diverse linguistic contexts
**Trade-offs**:
- Computationally expensive to train
- More hyperparameters to tune
## Tokenization pipeline
Complete pipeline: **Normalization → Pre-tokenization → Model → Post-processing**
### Normalization
Clean and standardize text:
```python
from tokenizers.normalizers import NFD, StripAccents, Lowercase, Sequence
tokenizer.normalizer = Sequence([
NFD(), # Unicode normalization (decompose)
Lowercase(), # Convert to lowercase
StripAccents() # Remove accents
])
# Input: "Héllo WORLD"
# After normalization: "hello world"
```
**Common normalizers**:
- `NFD`, `NFC`, `NFKD`, `NFKC` - Unicode normalization forms
- `Lowercase()` - Convert to lowercase
- `StripAccents()` - Remove accents (é → e)
- `Strip()` - Remove whitespace
- `Replace(pattern, content)` - Regex replacement
### Pre-tokenization
Split text into word-like units:
```python
from tokenizers.pre_tokenizers import Whitespace, Punctuation, Sequence, ByteLevel
# Split on whitespace and punctuation
tokenizer.pre_tokenizer = Sequence([
Whitespace(),
Punctuation()
])
# Input: "Hello, world!"
# After pre-tokenization: ["Hello", ",", "world", "!"]
```
**Common pre-tokenizers**:
- `Whitespace()` - Split on spaces, tabs, newlines
- `ByteLevel()` - GPT-2 style byte-level splitting
- `Punctuation()` - Isolate punctuation
- `Digits(individual_digits=True)` - Split digits individually
- `Metaspace()` - Replace spaces with ▁ (SentencePiece style)
### Post-processing
Add special tokens for model input:
```python
from tokenizers.processors import TemplateProcessing
# BERT-style: [CLS] sentence [SEP]
tokenizer.post_processor = TemplateProcessing(
single="[CLS] $A [SEP]",
pair="[CLS] $A [SEP] $B [SEP]",
special_tokens=[
("[CLS]", 1),
("[SEP]", 2),
],
)
```
**Common patterns**:
```python
# GPT-2: sentence <|endoftext|>
TemplateProcessing(
single="$A <|endoftext|>",
special_tokens=[("<|endoftext|>", 50256)]
)
# RoBERTa: <s> sentence </s>
TemplateProcessing(
single="<s> $A </s>",
pair="<s> $A </s> </s> $B </s>",
special_tokens=[("<s>", 0), ("</s>", 2)]
)
```
## Alignment tracking
Track token positions in original text:
```python
output = tokenizer.encode("Hello, world!")
# Get token offsets
for token, offset in zip(output.tokens, output.offsets):
start, end = offset
print(f"{token:10} → [{start:2}, {end:2}): {text[start:end]!r}")
# Output:
# hello → [ 0, 5): 'Hello'
# , → [ 5, 6): ','
# world → [ 7, 12): 'world'
# ! → [12, 13): '!'
```
**Use cases**:
- Named entity recognition (map predictions back to text)
- Question answering (extract answer spans)
- Token classification (align labels to original positions)
## Integration with transformers
### Load with AutoTokenizer
```python
from transformers import AutoTokenizer
# AutoTokenizer automatically uses fast tokenizers
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Check if using fast tokenizer
print(tokenizer.is_fast) # True
# Access underlying tokenizers.Tokenizer
fast_tokenizer = tokenizer.backend_tokenizer
print(type(fast_tokenizer)) # <class 'tokenizers.Tokenizer'>
```
### Convert custom tokenizer to transformers
```python
from tokenizers import Tokenizer
from transformers import PreTrainedTokenizerFast
# Train custom tokenizer
tokenizer = Tokenizer(BPE())
# ... train tokenizer ...
tokenizer.save("my-tokenizer.json")
# Wrap for transformers
transformers_tokenizer = PreTrainedTokenizerFast(
tokenizer_file="my-tokenizer.json",
unk_token="[UNK]",
pad_token="[PAD]",
cls_token="[CLS]",
sep_token="[SEP]",
mask_token="[MASK]"
)
# Use like any transformers tokenizer
outputs = transformers_tokenizer(
"Hello world",
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
)
```
## Common patterns
### Train from iterator (large datasets)
```python
from datasets import load_dataset
# Load dataset
dataset = load_dataset("wikitext", "wikitext-103-raw-v1", split="train")
# Create batch iterator
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i:i + batch_size]["text"]
# Train tokenizer
tokenizer.train_from_iterator(
batch_iterator(),
trainer=trainer,
length=len(dataset) # For progress bar
)
```
**Performance**: Processes 1GB in ~10-20 minutes
### Enable truncation and padding
```python
# Enable truncation
tokenizer.enable_truncation(max_length=512)
# Enable padding
tokenizer.enable_padding(
pad_id=tokenizer.token_to_id("[PAD]"),
pad_token="[PAD]",
length=512 # Fixed length, or None for batch max
)
# Encode with both
output = tokenizer.encode("This is a long sentence that will be truncated...")
print(len(output.ids)) # 512
```
### Multi-processing
```python
from tokenizers import Tokenizer
from multiprocessing import Pool
# Load tokenizer
tokenizer = Tokenizer.from_file("tokenizer.json")
def encode_batch(texts):
return tokenizer.encode_batch(texts)
# Process large corpus in parallel
with Pool(8) as pool:
# Split corpus into chunks
chunk_size = 1000
chunks = [corpus[i:i+chunk_size] for i in range(0, len(corpus), chunk_size)]
# Encode in parallel
results = pool.map(encode_batch, chunks)
```
**Speedup**: 5-8× with 8 cores
## Performance benchmarks
### Training speed
| Corpus Size | BPE (30k vocab) | WordPiece (30k) | Unigram (8k) |
|-------------|-----------------|-----------------|--------------|
| 10 MB | 15 sec | 18 sec | 25 sec |
| 100 MB | 1.5 min | 2 min | 4 min |
| 1 GB | 15 min | 20 min | 40 min |
**Hardware**: 16-core CPU, tested on English Wikipedia
### Tokenization speed
| Implementation | 1 GB corpus | Throughput |
|----------------|-------------|---------------|
| Pure Python | ~20 minutes | ~50 MB/min |
| HF Tokenizers | ~15 seconds | ~4 GB/min |
| **Speedup** | **80×** | **80×** |
**Test**: English text, average sentence length 20 words
### Memory usage
| Task | Memory |
|-------------------------|---------|
| Load tokenizer | ~10 MB |
| Train BPE (30k vocab) | ~200 MB |
| Encode 1M sentences | ~500 MB |
## Supported models
Pre-trained tokenizers available via `from_pretrained()`:
**BERT family**:
- `bert-base-uncased`, `bert-large-cased`
- `distilbert-base-uncased`
- `roberta-base`, `roberta-large`
**GPT family**:
- `gpt2`, `gpt2-medium`, `gpt2-large`
- `distilgpt2`
**T5 family**:
- `t5-small`, `t5-base`, `t5-large`
- `google/flan-t5-xxl`
**Other**:
- `facebook/bart-base`, `facebook/mbart-large-cc25`
- `albert-base-v2`, `albert-xlarge-v2`
- `xlm-roberta-base`, `xlm-roberta-large`
Browse all: https://huggingface.co/models?library=tokenizers
## References
- **[Training Guide](references/training.md)** - Train custom tokenizers, configure trainers, handle large datasets
- **[Algorithms Deep Dive](references/algorithms.md)** - BPE, WordPiece, Unigram explained in detail
- **[Pipeline Components](references/pipeline.md)** - Normalizers, pre-tokenizers, post-processors, decoders
- **[Transformers Integration](references/integration.md)** - AutoTokenizer, PreTrainedTokenizerFast, special tokens
## Resources
- **Docs**: https://huggingface.co/docs/tokenizers
- **GitHub**: https://github.com/huggingface/tokenizers ⭐ 9,000+
- **Version**: 0.20.0+
- **Course**: https://huggingface.co/learn/nlp-course/chapter6/1
- **Paper**: BPE (Sennrich et al., 2016), WordPiece (Schuster & Nakajima, 2012)
Name Size