huggingface-accelerate by davila7
Simplest distributed training API. 4 lines to add distributed support to any PyTorch script. Unified API for DeepSpeed/FSDP/Megatron/DDP. Automatic device placement, mixed precision (FP16/BF16/FP8). Interactive config, single launch command. HuggingFace ecosystem standard.
Coding
15.7K Stars
1.4K Forks
Updated Jan 12, 2026, 05:31 AM
Why Use This
This skill provides specialized capabilities for davila7's codebase.
Use Cases
- Developing new features in the davila7 repository
- Refactoring existing code to follow davila7 standards
- Understanding and working with davila7's codebase structure
Skill Snapshot
Auto scan of skill assets. Informational only.
Valid SKILL.md
Checks against SKILL.md specification
Source & Community
Repository claude-code-templates
Skill Version
main
Community
15.7K 1.4K
Updated At Jan 12, 2026, 05:31 AM
Skill Stats
SKILL.md 333 Lines
Total Files 1
Total Size 0 B
License MIT
---
name: huggingface-accelerate
description: Simplest distributed training API. 4 lines to add distributed support to any PyTorch script. Unified API for DeepSpeed/FSDP/Megatron/DDP. Automatic device placement, mixed precision (FP16/BF16/FP8). Interactive config, single launch command. HuggingFace ecosystem standard.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Distributed Training, HuggingFace, Accelerate, DeepSpeed, FSDP, Mixed Precision, PyTorch, DDP, Unified API, Simple]
dependencies: [accelerate, torch, transformers]
---
# HuggingFace Accelerate - Unified Distributed Training
## Quick start
Accelerate simplifies distributed training to 4 lines of code.
**Installation**:
```bash
pip install accelerate
```
**Convert PyTorch script** (4 lines):
```python
import torch
+ from accelerate import Accelerator
+ accelerator = Accelerator()
model = torch.nn.Transformer()
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset)
+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
optimizer.zero_grad()
loss = model(batch)
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
```
**Run** (single command):
```bash
accelerate launch train.py
```
## Common workflows
### Workflow 1: From single GPU to multi-GPU
**Original script**:
```python
# train.py
import torch
model = torch.nn.Linear(10, 2).to('cuda')
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
for epoch in range(10):
for batch in dataloader:
batch = batch.to('cuda')
optimizer.zero_grad()
loss = model(batch).mean()
loss.backward()
optimizer.step()
```
**With Accelerate** (4 lines added):
```python
# train.py
import torch
from accelerate import Accelerator # +1
accelerator = Accelerator() # +2
model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader) # +3
for epoch in range(10):
for batch in dataloader:
# No .to('cuda') needed - automatic!
optimizer.zero_grad()
loss = model(batch).mean()
accelerator.backward(loss) # +4
optimizer.step()
```
**Configure** (interactive):
```bash
accelerate config
```
**Questions**:
- Which machine? (single/multi GPU/TPU/CPU)
- How many machines? (1)
- Mixed precision? (no/fp16/bf16/fp8)
- DeepSpeed? (no/yes)
**Launch** (works on any setup):
```bash
# Single GPU
accelerate launch train.py
# Multi-GPU (8 GPUs)
accelerate launch --multi_gpu --num_processes 8 train.py
# Multi-node
accelerate launch --multi_gpu --num_processes 16 \
--num_machines 2 --machine_rank 0 \
--main_process_ip $MASTER_ADDR \
train.py
```
### Workflow 2: Mixed precision training
**Enable FP16/BF16**:
```python
from accelerate import Accelerator
# FP16 (with gradient scaling)
accelerator = Accelerator(mixed_precision='fp16')
# BF16 (no scaling, more stable)
accelerator = Accelerator(mixed_precision='bf16')
# FP8 (H100+)
accelerator = Accelerator(mixed_precision='fp8')
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
# Everything else is automatic!
for batch in dataloader:
with accelerator.autocast(): # Optional, done automatically
loss = model(batch)
accelerator.backward(loss)
```
### Workflow 3: DeepSpeed ZeRO integration
**Enable DeepSpeed ZeRO-2**:
```python
from accelerate import Accelerator
accelerator = Accelerator(
mixed_precision='bf16',
deepspeed_plugin={
"zero_stage": 2, # ZeRO-2
"offload_optimizer": False,
"gradient_accumulation_steps": 4
}
)
# Same code as before!
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
```
**Or via config**:
```bash
accelerate config
# Select: DeepSpeed → ZeRO-2
```
**deepspeed_config.json**:
```json
{
"fp16": {"enabled": false},
"bf16": {"enabled": true},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {"device": "cpu"},
"allgather_bucket_size": 5e8,
"reduce_bucket_size": 5e8
}
}
```
**Launch**:
```bash
accelerate launch --config_file deepspeed_config.json train.py
```
### Workflow 4: FSDP (Fully Sharded Data Parallel)
**Enable FSDP**:
```python
from accelerate import Accelerator, FullyShardedDataParallelPlugin
fsdp_plugin = FullyShardedDataParallelPlugin(
sharding_strategy="FULL_SHARD", # ZeRO-3 equivalent
auto_wrap_policy="TRANSFORMER_AUTO_WRAP",
cpu_offload=False
)
accelerator = Accelerator(
mixed_precision='bf16',
fsdp_plugin=fsdp_plugin
)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
```
**Or via config**:
```bash
accelerate config
# Select: FSDP → Full Shard → No CPU Offload
```
### Workflow 5: Gradient accumulation
**Accumulate gradients**:
```python
from accelerate import Accelerator
accelerator = Accelerator(gradient_accumulation_steps=4)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
with accelerator.accumulate(model): # Handles accumulation
optimizer.zero_grad()
loss = model(batch)
accelerator.backward(loss)
optimizer.step()
```
**Effective batch size**: `batch_size * num_gpus * gradient_accumulation_steps`
## When to use vs alternatives
**Use Accelerate when**:
- Want simplest distributed training
- Need single script for any hardware
- Use HuggingFace ecosystem
- Want flexibility (DDP/DeepSpeed/FSDP/Megatron)
- Need quick prototyping
**Key advantages**:
- **4 lines**: Minimal code changes
- **Unified API**: Same code for DDP, DeepSpeed, FSDP, Megatron
- **Automatic**: Device placement, mixed precision, sharding
- **Interactive config**: No manual launcher setup
- **Single launch**: Works everywhere
**Use alternatives instead**:
- **PyTorch Lightning**: Need callbacks, high-level abstractions
- **Ray Train**: Multi-node orchestration, hyperparameter tuning
- **DeepSpeed**: Direct API control, advanced features
- **Raw DDP**: Maximum control, minimal abstraction
## Common issues
**Issue: Wrong device placement**
Don't manually move to device:
```python
# WRONG
batch = batch.to('cuda')
# CORRECT
# Accelerate handles it automatically after prepare()
```
**Issue: Gradient accumulation not working**
Use context manager:
```python
# CORRECT
with accelerator.accumulate(model):
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
```
**Issue: Checkpointing in distributed**
Use accelerator methods:
```python
# Save only on main process
if accelerator.is_main_process:
accelerator.save_state('checkpoint/')
# Load on all processes
accelerator.load_state('checkpoint/')
```
**Issue: Different results with FSDP**
Ensure same random seed:
```python
from accelerate.utils import set_seed
set_seed(42)
```
## Advanced topics
**Megatron integration**: See [references/megatron-integration.md](references/megatron-integration.md) for tensor parallelism, pipeline parallelism, and sequence parallelism setup.
**Custom plugins**: See [references/custom-plugins.md](references/custom-plugins.md) for creating custom distributed plugins and advanced configuration.
**Performance tuning**: See [references/performance.md](references/performance.md) for profiling, memory optimization, and best practices.
## Hardware requirements
- **CPU**: Works (slow)
- **Single GPU**: Works
- **Multi-GPU**: DDP (default), DeepSpeed, or FSDP
- **Multi-node**: DDP, DeepSpeed, FSDP, Megatron
- **TPU**: Supported
- **Apple MPS**: Supported
**Launcher requirements**:
- **DDP**: `torch.distributed.run` (built-in)
- **DeepSpeed**: `deepspeed` (pip install deepspeed)
- **FSDP**: PyTorch 1.12+ (built-in)
- **Megatron**: Custom setup
## Resources
- Docs: https://huggingface.co/docs/accelerate
- GitHub: https://github.com/huggingface/accelerate
- Version: 1.11.0+
- Tutorial: "Accelerate your scripts"
- Examples: https://github.com/huggingface/accelerate/tree/main/examples
- Used by: HuggingFace Transformers, TRL, PEFT, all HF libraries
Name Size