fine-tuning-with-trl by davila7
Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF, align model with preferences, or train from human feedback. Works with HuggingFace Transformers.
Coding
15.7K Stars
1.4K Forks
Updated Jan 12, 2026, 05:31 AM
Why Use This
This skill provides specialized capabilities for davila7's codebase.
Use Cases
- Developing new features in the davila7 repository
- Refactoring existing code to follow davila7 standards
- Understanding and working with davila7's codebase structure
Skill Snapshot
Auto scan of skill assets. Informational only.
Valid SKILL.md
Checks against SKILL.md specification
Source & Community
Repository claude-code-templates
Skill Version
main
Community
15.7K 1.4K
Updated At Jan 12, 2026, 05:31 AM
Skill Stats
SKILL.md 456 Lines
Total Files 1
Total Size 0 B
License MIT
---
name: fine-tuning-with-trl
description: Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF, align model with preferences, or train from human feedback. Works with HuggingFace Transformers.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Post-Training, TRL, Reinforcement Learning, Fine-Tuning, SFT, DPO, PPO, GRPO, RLHF, Preference Alignment, HuggingFace]
dependencies: [trl, transformers, datasets, peft, accelerate, torch]
---
# TRL - Transformer Reinforcement Learning
## Quick start
TRL provides post-training methods for aligning language models with human preferences.
**Installation**:
```bash
pip install trl transformers datasets peft accelerate
```
**Supervised Fine-Tuning** (instruction tuning):
```python
from trl import SFTTrainer
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset, # Prompt-completion pairs
)
trainer.train()
```
**DPO** (align with preferences):
```python
from trl import DPOTrainer, DPOConfig
config = DPOConfig(output_dir="model-dpo", beta=0.1)
trainer = DPOTrainer(
model=model,
args=config,
train_dataset=preference_dataset, # chosen/rejected pairs
processing_class=tokenizer
)
trainer.train()
```
## Common workflows
### Workflow 1: Full RLHF pipeline (SFT → Reward Model → PPO)
Complete pipeline from base model to human-aligned model.
Copy this checklist:
```
RLHF Training:
- [ ] Step 1: Supervised fine-tuning (SFT)
- [ ] Step 2: Train reward model
- [ ] Step 3: PPO reinforcement learning
- [ ] Step 4: Evaluate aligned model
```
**Step 1: Supervised fine-tuning**
Train base model on instruction-following data:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset
# Load model
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B")
# Load instruction dataset
dataset = load_dataset("trl-lib/Capybara", split="train")
# Configure training
training_args = SFTConfig(
output_dir="Qwen2.5-0.5B-SFT",
per_device_train_batch_size=4,
num_train_epochs=1,
learning_rate=2e-5,
logging_steps=10,
save_strategy="epoch"
)
# Train
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer
)
trainer.train()
trainer.save_model()
```
**Step 2: Train reward model**
Train model to predict human preferences:
```python
from transformers import AutoModelForSequenceClassification
from trl import RewardTrainer, RewardConfig
# Load SFT model as base
model = AutoModelForSequenceClassification.from_pretrained(
"Qwen2.5-0.5B-SFT",
num_labels=1 # Single reward score
)
tokenizer = AutoTokenizer.from_pretrained("Qwen2.5-0.5B-SFT")
# Load preference data (chosen/rejected pairs)
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
# Configure training
training_args = RewardConfig(
output_dir="Qwen2.5-0.5B-Reward",
per_device_train_batch_size=2,
num_train_epochs=1,
learning_rate=1e-5
)
# Train reward model
trainer = RewardTrainer(
model=model,
args=training_args,
processing_class=tokenizer,
train_dataset=dataset
)
trainer.train()
trainer.save_model()
```
**Step 3: PPO reinforcement learning**
Optimize policy using reward model:
```bash
python -m trl.scripts.ppo \
--model_name_or_path Qwen2.5-0.5B-SFT \
--reward_model_path Qwen2.5-0.5B-Reward \
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
--output_dir Qwen2.5-0.5B-PPO \
--learning_rate 3e-6 \
--per_device_train_batch_size 64 \
--total_episodes 10000
```
**Step 4: Evaluate**
```python
from transformers import pipeline
# Load aligned model
generator = pipeline("text-generation", model="Qwen2.5-0.5B-PPO")
# Test
prompt = "Explain quantum computing to a 10-year-old"
output = generator(prompt, max_length=200)[0]["generated_text"]
print(output)
```
### Workflow 2: Simple preference alignment with DPO
Align model with preferences without reward model.
Copy this checklist:
```
DPO Training:
- [ ] Step 1: Prepare preference dataset
- [ ] Step 2: Configure DPO
- [ ] Step 3: Train with DPOTrainer
- [ ] Step 4: Evaluate alignment
```
**Step 1: Prepare preference dataset**
Dataset format:
```json
{
"prompt": "What is the capital of France?",
"chosen": "The capital of France is Paris.",
"rejected": "I don't know."
}
```
Load dataset:
```python
from datasets import load_dataset
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
# Or load your own
# dataset = load_dataset("json", data_files="preferences.json")
```
**Step 2: Configure DPO**
```python
from trl import DPOConfig
config = DPOConfig(
output_dir="Qwen2.5-0.5B-DPO",
per_device_train_batch_size=4,
num_train_epochs=1,
learning_rate=5e-7,
beta=0.1, # KL penalty strength
max_prompt_length=512,
max_length=1024,
logging_steps=10
)
```
**Step 3: Train with DPOTrainer**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DPOTrainer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
trainer = DPOTrainer(
model=model,
args=config,
train_dataset=dataset,
processing_class=tokenizer
)
trainer.train()
trainer.save_model()
```
**CLI alternative**:
```bash
trl dpo \
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--dataset_name argilla/Capybara-Preferences \
--output_dir Qwen2.5-0.5B-DPO \
--per_device_train_batch_size 4 \
--learning_rate 5e-7 \
--beta 0.1
```
### Workflow 3: Memory-efficient online RL with GRPO
Train with reinforcement learning using minimal memory.
Copy this checklist:
```
GRPO Training:
- [ ] Step 1: Define reward function
- [ ] Step 2: Configure GRPO
- [ ] Step 3: Train with GRPOTrainer
```
**Step 1: Define reward function**
```python
def reward_function(completions, **kwargs):
"""
Compute rewards for completions.
Args:
completions: List of generated texts
Returns:
List of reward scores (floats)
"""
rewards = []
for completion in completions:
# Example: reward based on length and unique words
score = len(completion.split()) # Favor longer responses
score += len(set(completion.lower().split())) # Reward unique words
rewards.append(score)
return rewards
```
Or use a reward model:
```python
from transformers import pipeline
reward_model = pipeline("text-classification", model="reward-model-path")
def reward_from_model(completions, prompts, **kwargs):
# Combine prompt + completion
full_texts = [p + c for p, c in zip(prompts, completions)]
# Get reward scores
results = reward_model(full_texts)
return [r["score"] for r in results]
```
**Step 2: Configure GRPO**
```python
from trl import GRPOConfig
config = GRPOConfig(
output_dir="Qwen2-GRPO",
per_device_train_batch_size=4,
num_train_epochs=1,
learning_rate=1e-5,
num_generations=4, # Generate 4 completions per prompt
max_new_tokens=128
)
```
**Step 3: Train with GRPOTrainer**
```python
from datasets import load_dataset
from trl import GRPOTrainer
# Load prompt-only dataset
dataset = load_dataset("trl-lib/tldr", split="train")
trainer = GRPOTrainer(
model="Qwen/Qwen2-0.5B-Instruct",
reward_funcs=reward_function, # Your reward function
args=config,
train_dataset=dataset
)
trainer.train()
```
**CLI**:
```bash
trl grpo \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--dataset_name trl-lib/tldr \
--output_dir Qwen2-GRPO \
--num_generations 4
```
## When to use vs alternatives
**Use TRL when:**
- Need to align model with human preferences
- Have preference data (chosen/rejected pairs)
- Want to use reinforcement learning (PPO, GRPO)
- Need reward model training
- Doing RLHF (full pipeline)
**Method selection**:
- **SFT**: Have prompt-completion pairs, want basic instruction following
- **DPO**: Have preferences, want simple alignment (no reward model needed)
- **PPO**: Have reward model, need maximum control over RL
- **GRPO**: Memory-constrained, want online RL
- **Reward Model**: Building RLHF pipeline, need to score generations
**Use alternatives instead:**
- **HuggingFace Trainer**: Basic fine-tuning without RL
- **Axolotl**: YAML-based training configuration
- **LitGPT**: Educational, minimal fine-tuning
- **Unsloth**: Fast LoRA training
## Common issues
**Issue: OOM during DPO training**
Reduce batch size and sequence length:
```python
config = DPOConfig(
per_device_train_batch_size=1, # Reduce from 4
max_length=512, # Reduce from 1024
gradient_accumulation_steps=8 # Maintain effective batch
)
```
Or use gradient checkpointing:
```python
model.gradient_checkpointing_enable()
```
**Issue: Poor alignment quality**
Tune beta parameter:
```python
# Higher beta = more conservative (stays closer to reference)
config = DPOConfig(beta=0.5) # Default 0.1
# Lower beta = more aggressive alignment
config = DPOConfig(beta=0.01)
```
**Issue: Reward model not learning**
Check loss type and learning rate:
```python
config = RewardConfig(
learning_rate=1e-5, # Try different LR
num_train_epochs=3 # Train longer
)
```
Ensure preference dataset has clear winners:
```python
# Verify dataset
print(dataset[0])
# Should have clear chosen > rejected
```
**Issue: PPO training unstable**
Adjust KL coefficient:
```python
config = PPOConfig(
kl_coef=0.1, # Increase from 0.05
cliprange=0.1 # Reduce from 0.2
)
```
## Advanced topics
**SFT training guide**: See [references/sft-training.md](references/sft-training.md) for dataset formats, chat templates, packing strategies, and multi-GPU training.
**DPO variants**: See [references/dpo-variants.md](references/dpo-variants.md) for IPO, cDPO, RPO, and other DPO loss functions with recommended hyperparameters.
**Reward modeling**: See [references/reward-modeling.md](references/reward-modeling.md) for outcome vs process rewards, Bradley-Terry loss, and reward model evaluation.
**Online RL methods**: See [references/online-rl.md](references/online-rl.md) for PPO, GRPO, RLOO, and OnlineDPO with detailed configurations.
## Hardware requirements
- **GPU**: NVIDIA (CUDA required)
- **VRAM**: Depends on model and method
- SFT 7B: 16GB (with LoRA)
- DPO 7B: 24GB (stores reference model)
- PPO 7B: 40GB (policy + reward model)
- GRPO 7B: 24GB (more memory efficient)
- **Multi-GPU**: Supported via `accelerate`
- **Mixed precision**: BF16 recommended (A100/H100)
**Memory optimization**:
- Use LoRA/QLoRA for all methods
- Enable gradient checkpointing
- Use smaller batch sizes with gradient accumulation
## Resources
- Docs: https://huggingface.co/docs/trl/
- GitHub: https://github.com/huggingface/trl
- Papers:
- "Training language models to follow instructions with human feedback" (InstructGPT, 2022)
- "Direct Preference Optimization: Your Language Model is Secretly a Reward Model" (DPO, 2023)
- "Group Relative Policy Optimization" (GRPO, 2024)
- Examples: https://github.com/huggingface/trl/tree/main/examples/scripts
Name Size